PEEKABOO: Hiding Parts of an Image for Unsupervised Object Localization

Paper ID: 305

Hasib Zunair and A. Ben Hamza Concordia University, Montreal, Canada

British Machine Vision Conference 2024

We aim to localize unfamiliar and salient objects without the need for class specific training

- Supervised learning is time-consuming and fails in cases of novel objects due to the finite nature of object classes.
- Unsupervised learning has challenges due to absence of visual information like appearance, type and number of objects

Image credit: <u>Link</u>

Introc	luction

Existing unsupervised methods are complex and do not model visual context; fails when objects are small, reflective or under poor illumination

Model

- Multiple stages of training
- Millions of learnable parameters
- Ensembles

Slide 3/14

Data:

• Uses both large-scale real world and synthetic data

We introduce Peekaboo, a self-supervised single stage approach to localize novel and salient objects in an unsupervised manner

Peekaboo outperforms SOTA method on Single Object Discovery and Unsupervised Saliency Detection tasks

		DUT-OMRON		DUTS-TE		ECSSD				
Method	Learning	Acc	IoU	$\max F_{\beta}$	Acc	IoU	$\max F_{\beta}$	Acc	IoU	$\max F_{\beta}$
HS [12]		84.3	43.3	56.1	82.6	36.9	50.4	84.7	50.8	67.3
wCtr [83.8	41.6	54.1	83.5	39.2	52.2	86.2	51.7	68.4
WSC [86.5	38.7	52.3	86.2	38.4	52.8	85.2	49.8	68.3
DeepUSPS [23]		77.9	30.5	41.4	77.3	30.5	42.5	79.5	44.0	58.4
BigBiGAN [🗳]		85.6	45.3	54.9	87.8	49.8	60.8	89.9	67.2	78.2
E-BigBiGAN[86.0	46.4	56.3	88.2	51.1	62.4	90.6	68.4	79.7
Melas-Kyriazi et al. [23]		88.3	50.9	-	89.3	52.8	-	91.5	71.3	-
LOST [79.7	41.0	47.3	87.1	51.8	61.1	89.5	65.4	75.8
DSM [24]		80.8	42.8	55.3	84.1	47.1	62.1	86.4	64.5	78.5
TokenCut [🎹]		88.0	53.3	60.0	90.3	57.6	67.2	91.8	71.2	80.3
SelfMask [🛂]	\checkmark	90.1	58.2	-	92.3	62.6	-	94.4	78.1	-
FOUND† [🛄]	\checkmark	<u>90.7</u>	57.1	<u>79.9</u>	<u>93.5</u>	<u>63.7</u>	85.2	94.9	80.6	<u>95.1</u>
DeepCut 🔲	\checkmark	-	-	-	-	59.5	-	-	74.6	-
WSCUOD [\checkmark	89.7	53.6	64.4	91.7	59.9	73.1	92.2	72.7	85.4
PEEKABOO (Ours)	\checkmark	91.5	<u>57.5</u>	80.4	93.9	64.3	86.0	<u>94.6</u>	<u>79.8</u>	95.3
LOST + BS [\checkmark	81.8	48.9	57.8	88.7	57.2	69.7	91.6	72.3	83.7
DSM + CRF [🖾]	\checkmark	87.1	56.7	64.4	83.8	51.4	56.7	89.1	73.3	80.5
WSCUOD + BS [🔼]	\checkmark	90.9	58.5	68.3	92.5	63.0	<u>76.4</u>	92.8	74.2	89.6
TokenCut + BS [\checkmark	89.7	<u>61.8</u>	<u>69.7</u>	91.4	62.4	75.5	93.4	77.2	87.4
SelfMask + BS [🛂]	\checkmark	<u>91.9</u>	65.5	-	93.3	66.0	-	95.5	81.8	-
FOUND + BS† [🛄]	\checkmark	91.7	60.9	69.1	<u>94.0</u>	<u>66.1</u>	75.0	<u>95.2</u>	<u>81.7</u>	<u>93.0</u>
PEEKABOO + BS (Ours)	\checkmark	92.4	61.2	71.4	94.4	66.3	77.4	94.9	80.6	93.7

Method	Learning	VOC07	VOC12	COCO20K
Zhang et al. [11]		46.2	50.5	34.8
DDT+ [[]]		50.2	53.1	38.2
rOSD [54.5	55.3	48.5
LOD [53.6	55.1	48.5
DINO [2]		45.8	46.2	42.1
LOST [1] (ViT-S/16)		61.9	64.0	50.7
LOST + CAD [65.7	70.4	57.5
DSM [22] (ViT-S/16)		62.7	66.4	52.2
TokenCut [11] (ViT-S/16)		68.8	72.1	58.8
TokenCut + CAD [71.4	75.3	62.6
SelfMask [29]	\checkmark	<u>72.3</u>	75.3	62.7
FOUND† [🛄]	\checkmark	71.7	<u>75.6</u>	61.1
FreeSOLO [\checkmark	56.1	56.7	52.8
DeepCut [II]	√	69.8	72.2	61.6
WSCUOD [22]	\checkmark	70.6	72.1	63.5
DINOSAUR [22]	\checkmark	-	70.4	67.2
PEEKABOO (ViT-S/8) (Ours)	\checkmark	72.7	75.9	<u>64.0</u>

Introduction

Background

PEEKABOO

Results

Conclusion

Slide 5/14

Peekaboo components complement each other; is better with high masking of images

Introduction Background PEEKABOO Results Conclusion Slide 6/
--

Peekaboo can detect multiple unfamiliar objects of different shapes and scales; basically which are not background

Introduction	Background	PEEKABOO	Results	Conclusion	Slide 7/14
--------------	------------	----------	---------	------------	------------

Consider using Peekaboo in your research!

- A self-supervised segmentation model with zero-shot generalization to unfamiliar images and objects that are small, reflective or under poor illumination without the need for additional training.
- Compared to existing methods it does not require:
 - Multiple stages of training
 - Millions of learnable parameters
 - Combinations of multiple networks
 - Large scale real world and synthetic data

Project Page: https://hasibzunair.github.io/peekaboo/

Introduction	Background	PEEKABOO	Results	Conclusion	Slide 8/8
--------------	------------	----------	---------	------------	-----------