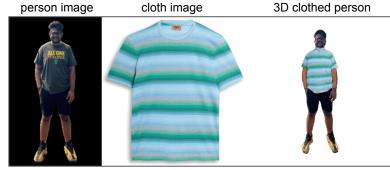
Monocular-to-3D Virtual Try-On using Deep Residual U-Net


COMP 6381: Digital Geometric Modeling, Fall 2021 Project Presentation by Hasib Zunair, 40126681

Motivation

• Methods for 3D virtual try-on rely on **3D shapes** and **clothing templates** which is impractical for different clothing types (e.g. long/short sleeves)

• 2D try-on is another alternative, but cannot fully represent the human body

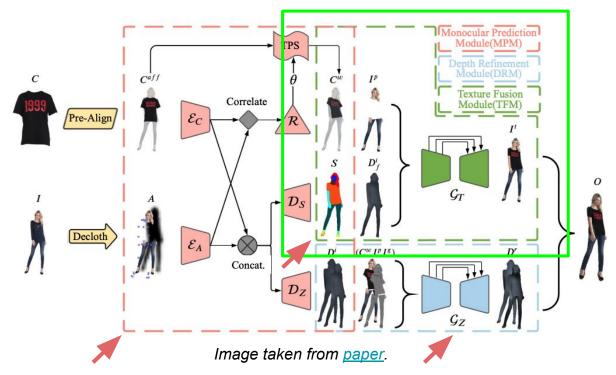
 A new method (M3D-VTON) generates textured 3D try-on meshes only from (input) (input) (output)
person and clothing image!

[1] Zhao. et al, https://arxiv.org/abs/2108.05126, ICCV 2021

	Motivation	Approach	Qualitative Results	Quantitative Results	Slide 2/10
--	------------	----------	---------------------	----------------------	------------

Problems with M3D-VTON

• Simple U-Net [1] architecture is insufficient in *synthesizing body parts* and *capturing the complex relationship* of clothing (e.g front/back part)

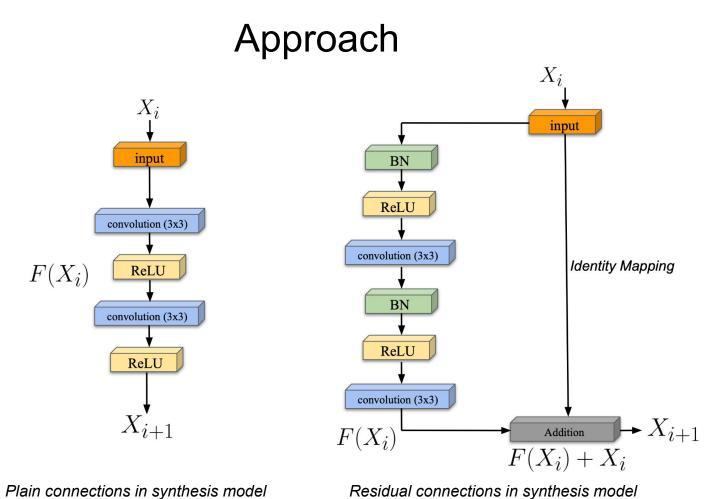

• Leads to blurry and unrealistic outputs which negatively affects final 3D try-on result

• Residual connections [2] in the existing synthesis model to learn better representation of input data

[1] Ronneberger. et al, <u>https://arxiv.org/abs/1505.04597</u>, *MICCAI 2015* [2] He. et al, <u>https://arxiv.org/abs/1512.03385</u>, *CVPR 2016*

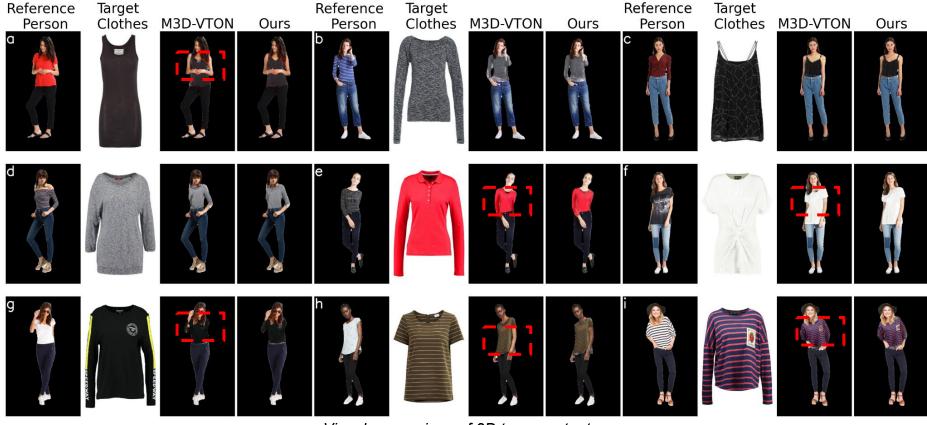
Motiv	ation	Approach	Qualitative Results	Quantitative Results	Slide 3/10
-------	-------	----------	---------------------	----------------------	------------

Approach



[1] Zhao. et al, https://arxiv.org/abs/2108.05126, ICCV 2021

[2] Kazhdan. et al, https://www.cs.jhu.edu/~misha/MyPapers/ToG13.pdf, TOG 2013


[3] Telea. et al, http://www.olivier-augereau.com/docs/2004JGraphToolsTelea.pdf, J. Graphics 2004

Motivation	Approach	Qualitative Results	Quantitative Results	Slide 4/10
------------	----------	---------------------	----------------------	------------

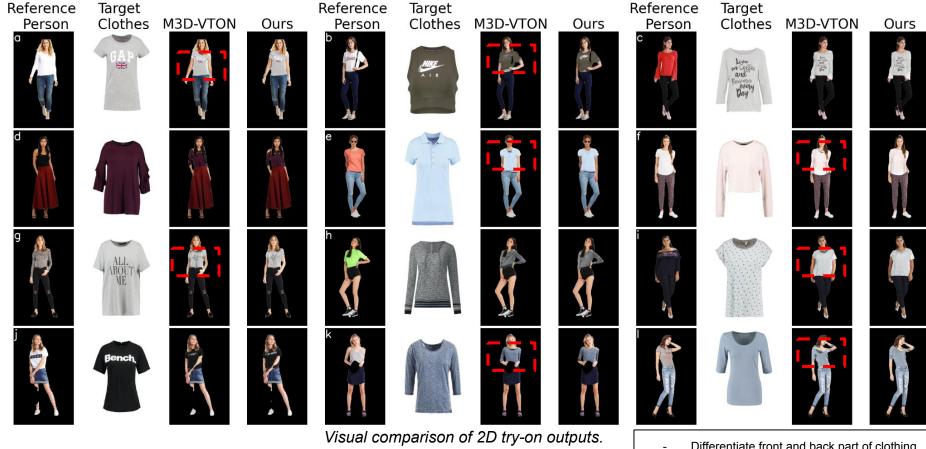
Residual connections in synthesis model

	Motivation	Approach	Qualitative Results	Quantitative Results	Slide 5/10
--	------------	----------	---------------------	----------------------	------------

Visual comparison of 2D try-on outputs.

- Differentiate front and back part of clothing
- Preserves logo and texture of clothing
- Reduces artifacts in non-target body parts

Motivation


Approach

Qualitative Results

Results Quantitative Results

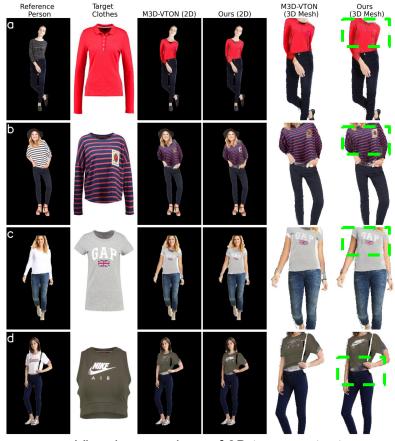
-

Slide 6/10

- Differentiate front and back part of clothing
- Preserves logo and texture of clothing -
- Reduces artifacts in non-target body parts

Motivation

Approach


Qualitative Results

Quantitative Results

-

Slide 7/10

Better 2D try-on leads to better textured 3D mesh!

Visual comparison of 3D try-on outputs.

MotivationApproachQualitative ResultsQuantitative ResultsSlide 8/8

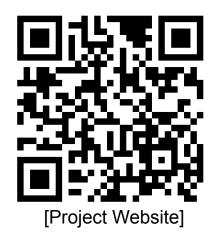
3D try-on outputs from our method using out-of-distribution images.

	Motivation	Approach	Qualitative Results	Quantitative Results	Slide 9/10
--	------------	----------	---------------------	----------------------	------------

Method	FID Score ↓	SSIM Score ↑
VITON, CVPR 2018	28.43	0.8807
CP-VTON, ECCV 2018	20.05	0.8503
CP-VTON+ CVPRW 2020	23.18	0.8782
ACGPN, CVPR 2020	20.19	0.8924
M3D-VTON, ICCV 2021	19.87	0.9725
Ours	15.16	0.9814

FID and SSIM scores on the MPV3D test set.

- Improvement on both metrics over M3D-VTON
- Significant improvement over other methods


Motivation	Approach	Qualitative Results	Quantitative Results	Slide 10/10

To conclude..

• Residual connections work better than plain connections

Improves synthesis of 2D virtual try-on

 Eventually leads to better reconstruction of 3D virtual try-on meshes

